
Theoret. Chim. Acta (Berl.) 60, 339-353 (1981) 
THEORETICA CHIMICA ACTA 

O Springer -Verlag 1981 

A Method for Molecular Correlation Energy 
Calculations. Application to the Determination of 
Dissociation Energies of Diatomic and Polyatomic 
Molecules 

Jacques Lievin, Jacques Breulet*, and Georges Verhaegen 

Laboratoire de Chimie Physique Mol6culaire, Facult~ des Sciences, CP. 160, Universit6 Libre de 
Bruxelles, 1050 Bruxelles, Belgium 

A simple and economical method for molecular correlation energy calcula- 
tions is developed. In this method, the internal part of the correlation energy 
is calculated by means of a CI in a minimal basis set and the non-internal 
part (semi-internal and all-external) is evaluated using an original "atoms-in- 
molecule" method. It is successfully applied to the determination of dissoci- 
ation energies of some diatomic (H2, NH, C2, CN, N2, CO, NO, 02, F2) and 
polyatomic (HeO, N20,  CO2, N3H, CH2N2, CH2CO, C2N2) molecules. The 
results are compared to those obtained using very elaborate variational 
methods. 
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1. Introduction 

It is well known that the SCF model fails to describe most of the chemical 
properties of the molecules. Even very elaborate basis sets approaching the 
Har t ree -Fock  limit often lead to chemically meaningless results. One of the 
properties that cannot be predicted by a SCF wave-function is the bond dissoci- 
ation energy (see for example H.F. results for diatomic molecules in Table 5). 
Very important efforts have been made these last two decades to provide new 
methods able to calculate the difference between the SCF energy and the exact 
nonrelativistic solution, the so-called "correlation energy". 
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The most  popular  method is undoubtedly the "configuration interaction" method 
(CI), which is also the most  generally applicable. In a CI  calculation, the exact 
solution is approached by a linear expansion of Slater determinants  of which 
the coefficients are variationally optimized. Although a very simple concept is 
at the heart  of this method (Ritz variation principle), it involves considerable,  
computat ional  difficulties. It is not only the size of the expansion that increases 
rapidly with the size of the system under  study (enormous matrices requiring 
always more  computer  t ime and m em ory  space) but also that nearly each problem 
has to be t reated specifically with respect to the choice of the basis set, the 
molecular  orbital sub-set to be considered, and the configurations to be selected. 
This made  Shavitt say [1]: "Thus,  even though the limits on the size of practical 
calculations are continuously being extended by improvements  in techniques 
and in computer  capabilities, adequate  CI calculations on large molecules are 
not in sight". A particularly efficient method is the MCSCF procedure where 
the orbitals of the configurations as well as the expansion coefficients are opti- 
mized to lower the energy. However ,  on the one hand, the necessary knowledge 
of the starting configurations needed to describe the chemical process under 
study and on the other hand, the increasing computer  difficulties for larger 
systems make  this method quickly unpracticable. 

Nevertheless,  quite good results can be obtained for small systems as is pointed 
out in Table 1 where some elaborate  calculations of dissociation energies are 
shown. 

Other  methods,  such as the iterative natural orbital method [8], the higher-order  
per turbat ion theory [9], the "pair  theory"  [10-12], have been used successfully. 
A m o n g  them, the fragmentat ion of the correlation energy proposed by Oksiiz 
and Sinanoglu [13] is at the heart  of the method we propose here. The method 
to be  described is devoted to calculate economically the molecular  correlation 
energy of systems for which an accurate variational t rea tment  would be unpracti-  
cable. It  combines the use of CI calculations with minimal basis sets together  
with a modified version of an "a toms- in-molecule"  method first developed by 
Liu and Verhaegen [14]. Although not variational, it has been successfully 

Table 1. Elaborate calculations of dissociation energies (eV) of some small systems 

Mol Method of calculation a (Ref.) De(calc)  De(exp) b 

C2 
N2 
02 
F2 
H20 ~ 

MCSCF(n = 4)/CI(n = 142) 
Multi-r6f. db.exc(n = 150234 
MCSCF(n = 6)/CI(n = 248) 
MCSCF(n = 6) 
FO/CI(INO)(n (C2~) = 4120; n (Cs) = 7996) 

[3] 5.55 6.33 
[4] 9.33 9.91 
[5] 4.99 5.21 
[6] 1.68 1.65 
[7] 9.245 10.1 

a All calculations made with very large basis sets; n = number of configurations included in CI or 
MCSCF 
b All values from Ref. [2]. 
c H20(IA a) ~ 2H(2S) + O(3P) �9 
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applied to the calculation of the dissociation energy of the molecules H2, NH, 
C2, N2, CO, CN, NO, F2, H20, N20, N3H, CH2N2, CH2CO, CO2, C2N2. 

2. Methods  of Calculation 

2.1. Separate Correlation Effects 

An advantageous alternative to purely variational techniques is given by the 
theory developed by Oksfiz and Sinanoglu [13] where the correlation effects in 
atomic systems are separated into three types: internal, semi-internal and all- 
external correlation effects. A physical and mathematical support of this partition 
is proposed by the authors in a context of pair correlation theory. In this 
decoupled approach, the total energy can be approximated by: 

ECORR CORR + CORR (1) E = EHF + I + ESI E E 

where EHF is the Hartree-Fock energy and E~ORR, E sIcoRg and E~ogR refer to 
internal, semi-internal and all-external correlation energies respectively. 

These three contributions to the correlation energy are characterized by different 
types of electron pair excitations with respect to a particular subspace defined 
in the complete orbital space. This subspace, called the "Hartree-Fock sea" is 
composed of the shells partially or completely occupied in the Hartree-Fock 
Slater determinant, i.e. the ls, 2s and 2p orbitals for first-row atoms. The three 
possible types of pair excitations are the following: 

(1) excitations from filled to vacant orbitals within the H.F. sea giving rise to 
internal correlation 

(2) excitations where one electron shifts within the H.F. sea and the other outside, 
giving rise to semi-internal correlation. 

(3) biexcitations from the inside to the outside of the H.F. sea, giving rise to 
all-external correlation. 

It has been postulated that these three correlation energy contributions can be 
calculated by separate CI calculations [13]. The internal part is concerned with 
biexcitations within a finite set of orbitals (H.F. sea) and can therefore be 
represented by a finite CI expansion. Oppositely the two other parts involving 
excitations to the infinite orbital space out of the H.F. sea give rise to infinite 
CI expansions. These expansions are slowly convergent with an increasing 
number of configurations, and therefore only very large CI calculations can 
approach the corresponding energy limits. In the following, the two parts of the 
correlation energy will be calculated separately over the SCF wavefunction. This 
approach is in keeping with the original theory of OksiJz and Sinanoglu which 
is based on a perturbation analysis of correlation effects. In this work, the internal 
part will be calculated variationally as detailed in Sect. 2.2. The semi-internal 
and all-external parts will be calculated by an "atoms-in-molecule" method 
described in Sect. 3.3. These two latter parts will be called hereafter the non- 
internal correlation energy. 
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Relation (1) thus becomes: 

E ~--- EHF q" E I O R R  NI + ECORR (2) 

2.2. Internal Correlation Energy 

The internal correlation effect is generally known in the atomic case as the 
important "near-degeneracy"  effect. It has, in the molecular case, an analogous 
physical meaning and represents the most important  part of the correlation 
energy contribution to chemical processes as will be seen further (Table 5). It 
seemed therefore important to calculate it variationally. 

In order to set up the finite CI expansion corresponding to the internal correlation 
effect in a molecular case, we will define the molecular H.F. sea as the set of 
molecular valence orbitals developed in terms of the atomic shells describing 
the H.F. seas of the constituent atoms, i.e. the molecular H.F. sea of a diatomic 
molecule AB composed of two first row atoms A and B is formed by the lo- 
to 60, lzr and 2~" molecular orbitals; indeed these orbitals span the atomic bases 
lSA, 2SA, 2pA and lsB, 2sB, 2pB. This set is also referred to in the literature as 
the full valence space of the molecule because its orbitals correlate asymptotically 
with the valence orbitals of the constituent atoms [15]. 

In a minimal basis set, all the molecular orbitals occupied as well as virtual, thus 
belong to the molecular H.F. sea. Therefore  in this type of basis, all biexcitations 
from occupied to virtual orbitals should correspond to internal correlation. The 
CI expansion can be of course simplified by excluding the core ( ls  components) 
from the atomic H.F. seas: in fact, since we are concerned with processes which 
do not affect the electronic structure of inner shells, this approximation will not 
influence significantly correlation energy differences describing these processes. 

However,  because of uncontrollable basis polarisation effects it could well be 
that a CI in a minimal basis set provides more than the actual internal correlation 
energy. For  this reason this approach will be tested by comparison with MCSCF- 
CI calculations carried out with extended basis sets. 

2.3. Non-Internal Correlation Energy 

We develop here an "atoms-in-molecule" method for the calculation of the 
non-internal correlation energy based on Mulliken population analyses [16]. 
The basic idea of this method has been described in a previous paper [14]. The 
method proposed here is revised and the formalism is modified in terms of 
probabilistic theory. 

We first postulate that it is possible to evaluate the molecular non-internal 
correlation energy by a sum of contributions from the constituent atoms of the 
molecule. Let  Piq represent the Mulliken gross population of each basis orbital 

n 

Xq in MO &i: Piq = ~p=l CipCiqSpq; a similar definition holds for fiiq of opposite 
spin. P~q(Piq) is interpreted by Mulliken [16] as the electronic population break- 
down of the molecular spinorbital &i(~g) on the atomic spinorbital Xq(Xq). From 
a probabilistic point of view, we can say that it represents the occupation 
probability of Xq(Xq) in &i(~i). 
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The summation over all the molecular spinorbitals defines an occupation proba- 
bility of Xq(h?q) in the molecule: 

k k 

Pq = Z elq; Pq = Z P,~. 
i=1 i=1 

The definition of an inoccupation probability (1 -Pq)  for each Xq, guarantees the 
normalization of the probabilities. It is easy to show that the quantity Pq(Pq) is 
invariant with respect to any unitary transformation of the occupied spinorbitals. 

The substitution of the notion of occupation probability to the initial notion of 
population breakdown allows us to define a simultaneous occupation probability 
of several atomic spinorbitals by simple product of the individual probabilities. 
For a given molecule we can thus associate to each atomic configuration of the 
constituent atoms an occupation probability. 

For each atom X~ of the given molecule, we have then K (X~) atomic configurations 
$'k(S'k(X~); k = 1, K(X~)) with the associated occupation probability/~k(Xi) given 
by: 

/Sk(X,)= rI (Pp)%(1-Pp) ~-~ 
p E X i  

where the product over p refers to the atomic spinorbitals of atom X~ and n o 
equals 1 or 0 depending on whether Xp is occupied or not in the atomic 
configuration Sk(X~). Since the Mulliken gross populations (P~q, ~q) are normal- 
ized, it follows that: 

K (X~) ~ 

~, Pk(X~) = 1. 
k = l  

Let n (Sk (Xi)) be the number of electrons of a fully occupied Sk (Xi) configuration. 
From the above normalization condition, it can be shown that the products 
/~k(X~). n (Sk(X~)) are population breakdowns of the total gross populations of 
each atom X~ and hence, the total number of electrons considered for the 
calculation of the non-internal correlation energy is equal to the number of 
electrons in the molecule. 

The Mulliken populations do not allow to distinguish between the different states 
of a given atomic configuration. Nevertheless, the non-internal correlation energy 
of an atomic configuration Sk(Xi) may be evaluated as the weighted average of 
the non-internal correlation energies of its constituent electronic states [17-18]. 
Thus, the non-internal correlation energy of the molecule (X1X2.  " �9 XN) will be 
simply the sum of the average atomic non-internal correlation energies multiplied 
by their occupation probability: 

" '"  ( ~ )  coRR(Sk(Xi)) (3) 
i = l  k = l  

where ECA~RR(Sk(Xi)) represents the non-internal configurational correlation 
energy of atom (ion) Xi in Sk configuration. 

This formalism can be used either with a RHF or an UHF wavefunction. 
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A necessary condition associated with such a decomposition of the molecular 
structure into atomic components in a L C A O  context is that the molecular 
orbitals have to be expressed unambiguously in terms of purely atomic basis 
orbitals, this is achieved only in a minimal basis set calculation [19-20]. 

To illustrate the above theory, an application of the formalism to the X 3 ~  state 
of the 02 molecule is presented in Appendix I. The AT ECORR values corresponding 
to all atomic configurations relative to the atoms C, N, O, F and H are listed in 
Appendix II. 

3. Results and Discussion 

3.1. Programs 

The SCF energies for closed-shell systems were obtained with the program 
GAUS S I AN 76 [21] that ensures the solution of Roothaan 's  equations. Open- 
shell structures were calculated by the method of Davidson (OCBSE) [22] coded 
by Morokuma and Iwata [23]. The CI calculations were run with the programs 
written by Whitten and his collaborators [24] and adapted to GAUSSIAN 76 
by one of us (J.L.). The MCSCF calculations were run on the ALIS program of 
Ruedenberg et al. [25]. Finally the non-internal correlation energy was calculated 
with a very simple program coded by us (J. L. and J. B.). 

All calculations were performed on the CDC 6500-6600 and CYBER 170/750 
computers of the Free Universities of Brussels Computing Center. 

3.2. Basis Sets and Geometry Optimization 

As it has been suggested in the preceding chapter, the different fragments of 
Eq. (2) have to be calculated with different basis sets. 

On the one hand, the best possible basis set should be used in order to apprach 
as closely as possible the Har t ree -Fock  limit; on the other hand both i ECORR 
and NI ECORR, for reasons explained above, must be calculated with a minimal 
basis set. 

We have used here a selection of different basis sets in-built to GAUSSIAN 76. 
The "polarized" basis set 6-31G** [26], consisting of a "double-zeta quality" 
basis set 6 -31G [27] completed with one d-function for second-row elements 
and one p function for hydrogens will be used here to approach the H.F. limit 
and the minimal STO-3G [28] basis set will serve for both ECORRI and ECoRRNI 
calculations. Of course, it is often too expensive to determine a complete potential 
surface for large systems with the method described in Sect. 2, essentially because 
of the computer  time spent by the 6-31G** calculations. Therefore  it is not 
trivial to choose adequately the points at which the dissociation energy will be 
calculated since different basis sets are used for the different fragments of the 
total energy. If the dissociation products are atoms, the dissociation limit is not 
ambiguous; oppositely the minimum equilibrium geometry of the molecular 
systems may vary considerably if one uses one basis set or another. In order to 
simplify the geometry optimization we made a few tests on the molecule N2. 
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The results are given in Table 2 where RCq refers to the interatomic equilibrium 
distance (in a parabolic approximation) of the potential  curve calculated with 
different basis sets and with basis set 6-31G* to which successive fragments of 
correlation energy have been added. 

Table 2. Equilibrium internuclear distance (Req) and force constant 
(k) of n2(l~fg) 

Type of Req k 
calculation (A) (10 6 dyn/cm) 

STO-3G 1.14 3.73 

6-31G 1.10 2.79 

6-31G* 1.09 2.79 

6-31G* +E~oRR 1.13 2.70 

6-31G* + E~ORR NI +EcoRR 1.12 2.67 

Expt (a) 1.094 2.29 

One observes immediately that the bond length is overest imated using basis set 
S T O - 3 G  and relatively well reproduced with 6-31G and 6-31G* basis sets. The 
6-31 G result offers undoubtedly the best "quality to price" ratio for this property.  
This conclusion was previously established on larger systems than N2, such as 
NH3 [29]. Thus, we propose to run the calculations of the different energy 
contributions at the optimized 6-31G geometry.  The energy difference with 
respect to the total curve is negligible in Na. In larger systems, with many  more 
geometrical  parameters  to optimize, this energy difference may be significantly 
larger. However ,  in this case, one may reasonably expect some compensat ion 
with the dissociation fragments which involve many of the same parameters .  

An interesting feature is that the force constant obtained with our method 
approaches tile actual value within 15% and, as can be seen in Table 2, the 
introduction of E ~ NI CORR and ECORR tends to improve  the SCF results. 

We can conclude that the calculation of the dissociation energy at the 6-31G 
equilibrium geometry  gives rise to a slight displacement on a curve of a relatively 
correct shape but doesn ' t  affect greatly the final energetic result. Similar tests 
carried out on the 02 molecule give rise to the same conclusions. Since the 
6-31G geometries are close to the experimental  ones, an advantageous alterna- 
tive to the present  choice would be to carry out the calculations at the experi- 
mental  geometries,  if they are available. 

3.3. Correlation Energy Calculations 

3.3.1. Internal Correlation 

Since it is not evident that a CI  calculation carried out with a minimal basis set 
gives a correct estimate of the internal correlation energy of a system, it seemed 
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necessary to test this hypothesis on a series of molecules. The molecules H2, F2, 
NH, C2, CO, 02 and H20  were selected for this purpose. For these systems, 
the CI minimal basis set (STO-3G) results were compared to parallel results 
obtained with the polarized 6-31G** set. 

With an extended basis set, the orbitals of the molecular H.F. sea form a sub-space 
of the full orbital space and must therefore be optimized variationally. For the 
simple systems selected here, this can be done conveniently by means of MCSCF 
calculations. Two types of procedures were adopted: 

(1) For H2, F2 and NH, the full configurational space, such as defined in 2.2 - 
respectively two, nine and four configurations - was introduced in the MCSCF 
calculation. 

(2) For the other molecules, the full configurational space is too large, and so, 
only the "dissociation" configurations 1 were first introduced in the MCSCF 
calculation. Since these configurations include all the valence orbitals par- 
ticipating to the H.F. sea, it may be hoped that already the first MCSCF 
calculation provides a good preliminary optimization. The CI over this 
valence space was then carried out and other major configurations arising 
from this calculation added to the MCSCF space and so on, until convergence 
of this iterative procedure was reached. In fact, for the simple systems 
considered here, the convergence limit was obtained directly with the "dis- 
sociation" configurations only. 

With both procedures one should obtain the internal correlation energy. 

In Table 3 we compare the large and small basis set internal correlation energy 
results. As could be expected, on account of basis polarization effects, the EIoRR 

Table 3. Comparison between minimal and extended basis-set 
calculations of the internal correlation energy 

EIoRR (eV) EcN~RR (eV) 

STO-3G ~ 6-31G, u 

H 2 -0.561 -0.490 c -0.544 
NH -0.544 -0.550 r -5.96 
C2 -5.58 -5.47 -8.60 
CO -3.46 -3.46 - 11.7 
O2 -2.86 -2.86 -14.6 
F2 -2.26 -2.18 ~ -17.9 
H20 -1.31 -1.33 -8.44 

a Minimal basis set. 
b Extended basis set. 
r All biexcitations in MCSCF calculation. 

1 The dissociation configurations are those which have to be added to the ground equilibrium 
configuration in order to obtain proper Wigner-Witmer products at dissociation geometries. 
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values calculated with the minimal set are most often slightly overest imated,  but 
nevertheless give quantitatively correct results. 

The above tests tend to show that one can still hope to obtain quantitatively 
meaningful results for larger molecules, such as those discussed below (c.f. Table 
7), as well as for yet larger systems for which the above MCSCF procedures 
have become unpracticable, but for which the minimal basis-set CI  calculations 
are still operative.  

3.3.2. Non-Internal  Correlation 

In all cases the non-internal correlation energy was calculated according to Eq. 
3. As an example of the order of magnitude of this energy contribution, values 
are given in the third column of Table 3. 

3.3.3. Total  Correlation Energy 

In Table 4, we compare  calculated and estimated [30] values of correlation 
energies for some of the molecules considered here. The overall agreement  may 
be considered as satisfactory since in all cases the error is < 7 %  and <1  eV. It 
is interesting to note that the error does not seem to be  size-dependent;  this is 
certainly comforting in view of applying this formalism to larger systems. Further,  
in these cases, one may expect some cancellation between the error in ECORR 
calculated for the molecule, and those of the dissociation products. 

Table 4. Comparison between calculatcd and csti- 
mated values of total correlation energy for various 
molecules (eV) 

a Ref. [30]. 

Mol. est a tale. 
E C O R R  E C O R R  

H2 -1.12 -1.12 
H20 -9.90 -9.77 
N2 -14.7 -15.6 
CO -14.1 -15.2 
BH3CO -20.2 -20.9 

3.4. Dissociation Energies of Some Small Molecules 

It  is possible today, as shown in Table 1, to obtain very good results for the 
calculation of a proper ty  like the dissociation energy of small systems with 
variational methods (MCSCF/CI) .  Therefore  it seemed interesting to test our  
method on a variety of small systems and compare  the results to those obtained 
with very elaborate calculations. 

3.4.1. Diatomic Molecules 

All the calculations per formed here concern the dissociation process of homo-  
and hetero-diatomic molecules in their ground state to the ground states of the 
atomic products. Both closed- and open-shell  structures are present  in the systems 
considered. 
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Calculated dissociation energies are listed in Table 5 where two levels of approxi- 
mation have been taken into account: the first part of the table collects the SCF 
results obtained with basis sets of increasing complexity, the second part shows 
the progressive incorporation of correlation energy. The final results are com- 
pared to the corresponding experimental values. 

At  the SCF level the basis effect on the dissociation energy results appears 
strongly. The 6-31G basis set, although reproducing well the geometrical para- 
meters, gives very poor  results for the binding energy, particularly with respect 
to the qualitatively good predictions of the simple STO-3G basis set. The 
polarization effect included in the 6-31G* basis is decisive to approach near 
Har t ree -Fock  values. 

Concerning the correlation energy, it is striking to note that although the internal 
correlation energy represents only a relatively small fraction (10-30%) of the 
total molecular energy, it is the dominant ( - 8 0 % )  contribution to the extra- 
molecular correlation energy, i.e. the correlation energy directly associated to 
the dissociation energy. 

Except for the particular case of F2, the incorporation of the non-internal part 
gives final results which can be compared to the corresponding experimental 
values and for which the agreement is about 5%. These results are close to those 
obtained with accurate calculations (Table 1). 

Finally, we note that, as pointed out in Sect. 3.3, the comparison of the results 
of Tables 4 and 5 show that the major part of the discrepancy found in the 
absolute values of the correlation energy have disappeared in the dissociation 
energy results. 

3.4.2. H20 Molecule 

In Table 6 we present calculated values of dissociation energies for two dissoci- 
ation processes of H20.  Our results are compared with those obtained by very 
elaborate calculations and with experimental data. It is obvious that in this case 
our method is certainly competitive - in fact our results are closer to the 
experimental values than the CI calculations in both eases and they certainly 
needed far less computational time. 

It is also interesting to note that our results for H20,  N2 and CO, respectively 
9.7, 10.0 and 11.6 eV, are at least as good as those obtained by the non-variational 
but nevertheless powerful UMP4(SDQ) [41] method which gives 9.24, 8.64 and 
10.51 eV respectively. 

Table 6. Calculated dissociation energies of two dissociation channels of H20 (eV) 

6-31G** H.F. Elaborate 
T O T  a T O T  a Process + ECORR + ECORR CI calc. Exp. 

H20(1A1) -~ 2H(2S) + O(3p) 9.41 9.69 9.245 [7] 10.08 [40] 
H20( 1A 1) ~ H2(1s + O(3P) 4.63 4.93 4.77 [39] 5.03 [41] 

a Our method. 
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3.4.3. Application to Polyatomic Molecules 

Since we want to apply this method to systems larger than diatomic molecules, 
we have performed test calculations on the fundamental dissociation process of 
several polyatomic molecules. The results are presented in Table 7 and compared 
to the corresponding experimental values. Although some of the experimental 
values are still quite doubtful, such as those for CHzN2 and Nail, comparison 
with well-established values for other molecules shows the same type agreement 
as that obtained for simpler systems. 

These results are very gratifying particularly with respect to the minimal computa- 
tional efforts involved. 

Table 7. Dissociation energies (eV) of polyatomic molecules 

Oe(6-31G *(*) + De 
I N I  a Mol. Process ECORR +ECORR) (exp) 

Nail N3H(IA ') ~ NH(3]~ ) +N2(152+) 0.5 1.0 [43], 0.6 [44] 
N20 N20(1'~ +) --* N2(aX~) + O(3p) 1.1 (1.2) 1.8 [45] 
CH2CO CH2CO( 1A a) ~ CH2(3B1) + CO(1X+) 3.4 3.6 [46-47] 
CO2 CO2(1]~+)~ CO(1]~+) +O(3p) 5.7 (7.0) 5.6 [45] 
CH2N2 CH2N2(~A 1) -~ CH2(3BI) +N2(1~ +) 0.9 <2.0 [48], < 2.1 [49] 
C2N 2 C2N2(1~,~ -) "-* 2CN(ZE +) 5.7 5.9 [45] 

T O T  
a Values in brackets refer to D, (H.F. +/~CORR).  H.F. energies come from Ref. [50] for atoms and 
Ref. [35] for molecules. 

4. Conclusion 

In the present work, we have developed a computationally inexpensive method 
for calculating the molecular correlation energy. It consists in treating separately 
internal and non-internal correlation contributions in the following manner: 
internal correlation is variationally calculated by a CI in a minimal basis set, 
and non-internal correlation is calculated by the "atoms-in-molecule" method 
proposed here. 

This method has been applied successfully, in conjunction with the use of Pople's 
basis sets (STO-3G, 6-31G, 6-31G*(*) included in the GAUSSIAN 76 program) 
to the calculation of the dissociation energy of some diatomic and polyatomic 
molecules. 

Although our method was tested on only one chemical property (dissociation 
energy), we think it could be applied to the calculation of other energies of 
chemical interest. Owing to its simplicity and its economical application, this 
method becomes particularly interesting for non-trivial systems. 
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Appendix I 

T h e  ca l cu l a t i on  of E NI CORR of O 2 ( X 3 ~ g )  is i l l u s t r a t ed  h e r e  in  ex tenso .  In  T a b l e  

8, o n e  finds the  M u l l i k e n  gross a t o m i c  p o p u l a t i o n s .  T h e s e  d a t a  a l low us  to  
d e t e r m i n e  the  o c c u p a t i o n  p r o b a b i l i t i e s  of  all t h e  poss ib l e  a t o m i c  s t ruc tu r e s  of 
each  o x y g e n  a to m.  T h e s e  s t ruc tu res ,  t he  c o r r e s p o n d i n g  s ta tes  a n d  p r o b a b i l i t i e s  

ECORR are  co l lec ted  in  T a b l e  9. T h e  use  of the  p r o b a b i l i t i e s  a n d  the  i n d i v i d u a l  AT 

in  e x p r e s s i o n  (6) gives t he  resu l t :  ECORR -- c o n t r i b u t i o n s  (see d a t a  in  A p p e n d i x  II)  " NI 

- 0 . 5 3 8  a.u.  

Table 8. Mulliken gross atomic populations of one oxygen atom in 
the O2(Xas molecule (R = 1.2 A; basis set STO-3G) 

x. Pq p0 & po 

ls 1 0 1 0 
2s 0.944 0.056 0.944 0.056 
2px 0.5 0.5 1 0 
2py 0.5 0.5 1 0 
2pz 0.557 0.443 0.557 0.443 

3 Table 9. Atomic configurations Sk of one oxygen atom in O2(X ]~g) with probability/~k -> 0.001 

Configuration Probability 
k Sk States (degeneracy) /~k 

1 lsa2s22p 6 1S 0.069 
2 lsZ2s22p s 2p 0.248 
3 ls22s22p 4 3p(9) + 1D(5) + 1S(1) 0.333 
4 1 s22s22p 3 4S(4) + 2D(10) + 2P(6) 0.197 
5 ls22s22p 2 3p(9) + 1D(5) + 1S(1) 0.044 
6 1s22s2p 6 aS 0.008 
7 ls22s2p 5 3P(9) + 1p(3) 0.029 
8 ls22s2p 4 4P(12) + 2P(6) + 2D(10) + 2S(2) 0.039 
9 ls22s2p 3 5S(5)+3S(3)+3D(15)+1D(5)+3P(9)+lP(3) 0.023 

10 ls22s2p 2 4p(12) + 2p(6) + 2D(10) + ZS(2) 0.005 
11 1 sZ2p 5 2p 0.001 
12 1 sZ2p 4 3p(9) + XD(5) + aS(l) 0.001 
13 ls22p 3 4S(4)+2D(lO)+2p(6) 0.001 
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Appendix II. 
Atomic  non-internal  correlation data  ~ (a.u.) 

J. Lievin et al 

s (b) Configurational correlation energy --'~CORR 
Configuration C N 0 F 

1S22S22p 6 0.413 ~ 0.409 c 0.406 c 0.398 e 
1s22sZ2p 5 0.318 c 0.319 c 0.321 ~ 0.324 
1s22s22p 4 0.257 c 0.259 ~ 0.260 0.262 
lsZ2s22p 3 0.195 r 0.199 0.203 0.206 
lsZ2s22p z 0.143 0.148 0.152 0.156 
ls22s22p 0.098 0.102 0.105 0.108 
1sE2s 2 0.054 0.056 0.057 0.058 
ls22s2p 6 0.449 r 0.446 r 0.441 ~ 0.439 
ls22s2p 5 0.315 c 0.315 c 0.317 0.322 
ls22s2p 4 0.244 r 0.244 r 0.243 0.241 
1S22S2p 3 0.170 0.169 0.172 0.186 
ls22s2p 2 0.113 0.117 0.120 0.122 
ls22s2p 0.073 0.076 0.078 0.079 
ls22s 0.050 0.051 0.051 0.051 
l s22p  6 0.463 c 0.466 c 0.468 d 0.470 c 
l s22p  5 0.330 r 0.332 ~ 0.335 0.336 
l s22p  4 0.227 c 0.228 ~ 0.230 0.231 c 
l s22p 3 0.146 0.146 0.148 ~ 0.150 
l s22p  2 0.085 0.086 0.089 0.092 
l s22p 0.052 0.054 0.055 0.056 
l s  2f 0.045 e 0.045 ~ 0.046 e 0.046 r 

a From data in Ref. [17, 18]. 
b Weighted average non-internal  correlation energy: See for example Table 9. 
c i=.xtrapolated or interpolated value. 
d Ref.  [51]. 
e Ref. [52]. 

E A T  t l s 2 ~  - f For H atom: - CORR ~ ) -- --0.039 a.u. [53]. 
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